

ANÁLISE EXPERIMENTAL ALVENARIA ESTRUTURAL DE BLOCOS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO

Palavras-Chave: [bloco de concreto], [alvenaria estrutural], [resistência ao fogo]

Autores/as:

Any Elizi Batista dos Santos [E. E. PROF. AMÉRICO BELLUOMINI] Beatriz Lapa de Camargo [E. E. CULTO À CIÊNCIA] Julia Marcondes Fico [E. E. PROCÓPIO FERREIRA] Stephany Domingues Lima [E. E. FELIPE CANTÚSIO] Eng^o Rafael Postigo Mazzali (mestrando)* Prof^a Dr^a Carla Neves Costa (orientadora)* *[Faculdade de Engenharia Civil, Arguitetura e Urbanismo da UNICAMP]

INTRODUÇÃO:

A alvenaria estrutural é um tipo de estrutura de edificações onde a alvenaria apresenta a dupla função: vedação e estabilidade estrutural. O material é composto de blocos estruturais fixados entre si por argamassa (normalmente de cimento Portland). Ambos os materiais são diferentes, apresentando propriedades mecânicas e térmicas ligeiramente diferentes à temperatura ambiente. A capacidade resistente do conjunto bloco de concreto e argamassa depende: das resistências do bloco, da argamassa e da adesão bloco-argamassa. Os modos de falha da alvenaria estrutural são três: rupturas do bloco ou da argamassa, ou ainda, por descolamento entre os blocos e a argamassa. Nos projetos para a situação normal de uso, os materiais são selecionados cuidadosamente para apresentarem resistências mecânicas com valores próximos. Em altas temperaturas, a heterogeneidade dos materiais é destacada. Acima dos 100 ºC, os materiais estruturais perdem resistência podendo levar desabamento de edifícios (COSTA *et al.*, 2002).

Neste trabalho é apresenta uma pesquisa aplicada, que busca solucionar um problema de resistência ao fogo de edificações: medir a resistência mecânica de argamassa de assentamento de blocos de concreto de alvenaria estrutural em altas temperaturas para "mapear" os níveis de resistência à adesão aos blocos para temperaturas $\theta \ge 100 \,^{\circ}$ C. São apresentados os procedimentos e os resultados de uma etapa prévia à análise experimental, para guiar a preparação de corpos de prova de alvenaria estrutural que serão aquecidos em um forno para medir a resistência a fogo. Foi selecionado o bloco vazado de dois furos da "família 29" (**Figura 1**), considerado o bloco-padrão de uma parede de alvenaria, usando em todo o vão sem interferências. Os blocos de um ou três furos são usados nas amarrações tipos "T" e cruz dos encontros de paredes que são locais de menor incidência do fluxo de calor em uma situação de incêndio (**Figura 2**). Após o aquecimento, os corpos de prova serão carregados até a ruptura, para medir carga de ruptura; os resultados apurados permitirão "mapear" a redução da resistência de adesão da argamassa em função da temperatura, para uso no projeto de alvenaria estrutural em situação de um incêndio.

A pesquisa está em desenvolvimento no Laboratório de Estruturas da Faculdade de Engenharia Civil, Arquitetura e Urbanismo da UNICAMP.

Figura 1 – Tipos padronizados ou "Famílias" de blocos de concreto. Fonte: Désir (s. d.).

Figura 2 – Bloco vazado de concreto simples. Fonte: Goiarte (2016).

OBJETIVOS:

- Investigar o fenômeno de transferência de calor por condução em um elemento de parede de alvenaria estrutural, usando-se as hipóteses de um caso clássico da Física Térmica.
- Verificar a precisão dos resultados de cálculos "manuais" e de análise numérica computacional usada quando se adota a formulação geral que descreve o problema.
- Identificar lacunas de informações a serem investigadas em ensaio experimental.

JUSTIFICATIVA:

Cálculos simplificados com base nas leis da Física, são indicados em normas técnicas para avaliação do conforto térmico de edificações (ABNT NBR 15220-2:2005). Nas pesquisas experimentais, as análises teóricas simulação computacional são usadas para o planejamento dos ensaios afim de evitar perdas de informações e danos a equipamentos. Uma análise preliminar auxilia as etapas de instrumentação dos corpos de prova e de execução dos ensaios.

METODOLOGIA:

Análise teórica numérica comparativa entre os cálculos simplificados "manuais" e cálculos avançados com auxílio computacional para análise numérica. As hipóteses de cálculo adotadas são as mesmas hipóteses do caso particular da transferência de calor unidimensional por condução (INCROPERA *et al.*, 2014; ÇENGEL & GHAJAR, 2012): fluxo de calor uniformemente distribuído sobre a superfície de uma unidade de alvenaria; fluxo de calor unidirecional, incidindo perpendicular à superfície da unidade de alvenaria; condução de calor descrita pela equação de Fourier; sistema conservativo¹; regime térmico estacionário; propriedades térmicas constantes.

Pela lei de Fourier, o fluxo de calor por condução é uma energia térmica perpendicular à área da superfície aquecida e atravessa a parede de espessura $\Delta \ell$ (eq. 1). Para as hipóteses adotadas, a equação permite uma analogia entre o fluxo de calor e a corrente elétrica, onde a resistência térmica é similar ao de resistência elétrica. A aplicação do conceito de resistência térmica (eq. 2) é explorada nos estudos introdutórios de Física no Ensino Médio (MATIAS & FRATTEZI, 2010; SILVA & BARRETO FILHO, 2015; FERRARO *et al.*, 2019), e tem aplicação na Engenharia Civil para avaliar o desempenho térmico de elementos de edificações onde a variação térmica decorre do aquecimento solar e das variações climáticas (ABNT NBR 15220-2:2005).

$$q_{\rm x}'' = -\frac{\lambda \cdot \text{\AA}rea \cdot \textbf{A}}{\Lambda \ell}$$

onde: qx["] = fluxo de calor por condução na direção "x" [W];

 λ = condutividade térmica do material [W/(m*K)];

Área = área da superfície perpendicular à ação do fluxo de calor por condução [m²]; $\Delta \theta = (\theta_{hot} - \theta_0) [^{o}C; K];$

 Δl = espessura da parede ou das camadas da parede [m].

$$R_{\rm t} = \frac{\Delta \ell}{\lambda \cdot \text{Å}rea} \tag{2}$$

onde: Rt = resistência térmica da parede ou da camada da parede [K/W].

2

(1)

¹ Onde não há variação de energia térmica na condução de calor dentro da alvenaria.

MATERIAIS:

Os materiais usados são: concreto para bloco estrutural, argamassa de cimento Portland para o assentamento dos blocos e ar que preenche furos dos blocos considerados duas câmaras internas. O bloco estrutural vazado da "família 29" (**Figura 1**), com dois furos, altura = 0,19 m x largura = 0,14 m x comprimento = 0,29 m, espessura das paredes externas e interna = 25 mm (**Figura 3**). A argamassa de assentamento possui espessura = 10 mm assumindo-se o valor médio dentro da tolerância indicada na ABNT NBR 16868-2:2020. As propriedades térmicas dos materiais estão apresentadas na **Tabela 1**. Por simplicidade do modelo, o ar foi considerado um material sólido equivalente com condutividade constante para $\theta \ge 100$ °C.

Materiais	Condutividade térmica λ [W/(m*K)]	Fontes		
concreto	1,6	EN 1994-1-2:2005		
ar	0,5294*	ABNT NBR 15220-2:2005		
argamassa	1,15	ABNT NBR 15220-2:2005		

Tabela 1 – Propriedades térmicas dos materiais da unidade estrutural de bloco.

Notas: * Calculado com base no valor da resistência térmica de câmaras de do ar (furos de blocos vazados) sujeitos ao fluxo de calor horizontal perpendicular à face externa da parede (Tabela B.1 do Anexo B da ABNT NBR 15220-2:2005, p. 11).

Figura 3 – Bloco vazado de concreto simples. Fonte: ABNT NBR 6136:2016)

EQUIPAMENTOS:

- Hardware: Computador laptop com processador Core™ i5 7400, memória RAM 8 GBytes, HD 1 TBytes, placa de vídeo 4 GBytes, monitor LCD LED e resolução de 1366 x 768; mouse óptico.
- Software: sistema operacional Microsoft[®] Windows[®] v. 10, aplicativos básicos do Microsoft[®] Office 365[®] (Word[®], Excel[®] e Power Point[®]), navegador de internet Google Chrome Versão 92.0.4515.159 (Versão oficial) 64 bits); LISA Finite Element Analysis v. 8.0.0 (versão demo)².

PROCEDIMENTOS:

A Figura 4 apresenta as etapas dos procedimentos. Para a análise unidimensional teórica, foram considerados três modelos de cálculo da resistência térmica equivalente (Figura 5; Tabela 2; Tabela 3; Tabela 4), desprezando-se a existência de uma resistência térmica de contato entre as camadas de concreto e de argamassa. Para a análise a bidimensional (2D) do fluxo de calor, foi usado *software* LISA v. 8.0.0 para o cálculo numérico usando-se o método dos elementos finitos.

Figura 4 – Procedimentos de investigação teórica e numérica. Fonte: Autoral

Espessura das camadas [m]		λ [W/(m*K)]		resistências		
			base [m]	altura [m]	Area da superfície [m ²]	Rt [K/W]
∆€,faixa bloco =	0,09	1,6	0,025	0,19	0,00475	11,84211
∆€,furo (ar) =	0,09	0,529	0,1075	0,19	0,020425	8,32313
∆€,parede bloco =	0,025	1,6	0,1075	0,19	0,020425	0,76499
∆€,faixa argamassa =	0,09	1,15	0,01	0,19	0,00475	41,18993

Tabela 2 – Cálculos de resistência equivalente do **modelo** (1).

² Tutorial and reference guide. LISA Finite Element Analysis. Sonnenhof Holdings: Ontário, 2013. 125 p.

∆€,espessura argamas =	0,025	1,15	0,01	0,19	0,0019	11,44165
				$R_{t,eq,paralelo1}$ (1) =	1,930	86 [m²*K/W]
				$R_{t,eq,paralelo2} =$	0,7017	05 [m²*K/W]
				R _{t,eq.série} ⁽³⁾ =	3,364	96 [m²*K/W]
Notas: (1) $\frac{1}{1} = -$	$\frac{3}{-1} + \frac{2}{-1}$	+1	:			

R_{t,eg.paralelo1} R_{t,furo} R_{t, faix a bloco} Rt faiya arga

 $=\frac{1}{R_{t,parede bloco}}$ R_{t,eg.paralelo} R_{t,espesssura argamassa}

(3) $R_{t,eq.serie} = R_{t,eq.paralelo1} + 2 \cdot R_{t,eq.paralelo2}$

Tabela 3 – Cálculos de resistência equivalente do modelo alternativo (2).

Econocoura das comodos [m]		λ [W/(m*K)]		resistências		
Espessura das cama	base [m]		altura [m]	Area da superfície [m ²]	Rt [K/W]	
∆€,faixa bloco =	0,09	1,6	0,025	0,19	0,00475	11,84211
∆€,furo (ar) =	0,09	0,529	0,1075	0,19	0,020425	8,32313
∆€,parede bloco =	0,025	1,6	0,1075	0,19	0,020425	0,76499
∆€, faixa argamassa =	0,14	1,15	0,01	0,19	0,0019	64,07323
				$R_{t,eq,paralelo1}$ (1) =	2,02582	[m²*K/W]
				R _{t,eq.série} ⁽²⁾ =	3,55581	[m²*K/W]
				$R_{t,eq,paralelo2} =$	3,36885	[m²*K/W]

(1) $\frac{1}{R_{t,eg.paralelo1}}$ Notas⁻ Rt, faixa bloco Rt.furo

(2) $R_{t,eq.serie} = R_{t,eq.paralelo1} + 2 \cdot R_{t,parede bloco}$

(3) $\frac{1}{R_{t,eg.paralelo}}$

 $=\frac{1}{R_{t,eg,paralelo1}}$

Tabela 4 – Cálculos de resistência equivalente do **modelo** (3)

Espessura das camadas [m]		λ [W/(m*K)]				
_			base [m]	altura [m]	Area da superfície [m ²]	R _t [K/W]
∆€,faixa bloco =	0,14	1,6	0,025	0,19	0,00475	18,42105
∆ℓ,furo (ar) =	0,09	0,529	0,1075	0,19	0,020425	8,32313
∆€,parede bloco =	0,025	0,529	0,1075	0,19	0,020425	2,31378
∆€,argamassa =	0,14	1,15	0,01	0,19	0,0019	64,07323
				R _{t,eq.série} ⁽¹⁾ =	12,9507	[m²*K/W]
				$R_{t,eq,paralelo} =$	3,00394	[m²*K/W]

Notas: (1) $R_{t,eq.s\acute{e}rie} = 2 \cdot R_{t,parede} + R_{t,furo}$;

(2) $\frac{1}{R_{t,eg,parealelo}} = \frac{2}{R_{t,eg,série}} + \frac{3}{R_{t,faixa bloco}}$

Figura 5 – Modelos de cálculo da resistência térmica equivalente. Fonte: Autoral.

RESULTADOS E DISCUSSÃO:

A análise teórica apresentou resultados diferentes do fluxo de calor devido ao modelo de "circuito térmico" usado no cálculo da resistência térmica equivalente (Tabela 5). Há diferenças de resultados superiores a 5%, significando imprecisões que afetam a confiabilidade do modelo adotado nas soluções de Engenharia. A análise 2D numérica computacional mostrou que o gradiente térmico não é constante. Há vórtices localizados, indicando que o fluxo de calor não é unidirecional na seção composta "bloco-argamassa" (Figura 6). Nas regiões dos cantos dos furos há mudanças "caóticas" do sentido do fluxo de calor. O campo de temperaturas não é isotérmico. Na linha de adesão entre o bloco e a argamassa, o degradê significa mudanças da temperatura e do fluxo de calor. É necessário um estudo da influência da resistência térmica de contato entre materiais diferentes para a modelagem computacional. No software foi gerada uma malha de elementos finitos com base em um estudo expedito de refinamento; mas, são necessários estudos de outros tipos de malhas para a precisão de resultados. Para os materiais, adotou-se propriedades térmicas constantes, mas elas variam para temperaturas $\theta > 100$ °C. Uma análise experimental é necessária para checagem.

Fabela 5 – Fluxo de calor por condução para cada modelo de resistência térmica en	n função da	as variações té	irmicas ∆θ (⁰C).
---	-------------	-----------------	------------------

$\Delta \theta = \theta_{hot}$	- θ ₀	fluxo de	e calor conduçã	condução Q [W] fluxo de calor condução q [W/m²]*			Variação dos	
$0_0 = 20^{-1}$	6	Modelo (1)Modelo (2)Modelo (3)			modelo (1)	entre modelos		
θ _{hot} (ºC)	∆θ (ºC; K)	3,365	3,369	3,004	0,192	0,192	0,171	m(2)/m(1)
20	0	0,00	0,00	0,00	0,00	0,00	0,00	0,12%
200	180	53,49	53,43	59,92	938,46	937,38	1051,25	
400	380	112,93	112,80	126,50	1981,20	1978,92	2219,31	m(3)/m(1)
600	580	172,36	172,17	193,08	3023,94	3020,45	3387,36	12,02%
800	780	231,80	231,53	259,66	4066,68	4061,98	4555,42	

Notas: * Fluxo de calor por unidade de área calculado usando a área da face vertical do conjunto bloco + argamassa, Área = b × h = 0,30 × 0,19 = 0,057 m².

Figura 6 – Saída gráfica de resultados da modelagem numérica do software LISA v.8.0.0. Fonte: Autoral

CONCLUSÕES:

Uma análise de condução de calor em um bloco de concreto permitiu comparar os resultados de um modelo teórico unidirecional aos de um modelo numérico bidimensional. A variação do fluxo de calor é significativa quando o material é uma composição de elementos com propriedades térmicas muito diferentes. Para o regime estacionário com pequena variação térmica, a estimativa da resistência térmica equivalente não é trivial. Uma análise experimental é necessária para avaliar a resistência térmica de alvenarias de blocos vazados.

REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15220-2: Desempenho

térmico de edificações Parte 2: Método de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. Rio de Janeiro, 2008. 34 p. [Versão corrigida que incorpora a Errata 1 de 09.06.2008] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 16868-2: Alvenaria estrutural

Parte 2: Execução e controle de obras. Rio de Janeiro, 2020. 23 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 6136: Blocos vazados de

concreto simples para alvenaria - Requisitos. Rio de Janeiro, 2016. 10 p. [Versão corrigida queincorpora a Errata 1, de 01.12.2016] Blocos. Goiarte, Aparecida de Goiânia, GO, 2016. Produtos, online. Disponível em:

http://www.goiarte.com.br/?page_id=75096. Acesso em: 30 ago. 2021.

CENGEL, Y. A.; GHAJAR, A. J. Transferência de Calor e Massa: Uma Abordagem Prática. 4ª Ed.Porto Alegre: AMGH, 2012. 928 p. COMITÉ EUROPÉEN DE NORMALISATION. EN 1994-1-2: Eurocode 4 - Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design. Brussels, 2005. 109 p.

COSTA, C. N.; FIGUEIREDO, A. D.; SILVA, V. P. Aspectos tecnológicos dos materiais. In: NUTAU'2002 - Sustentabilidade arquitetura desenho urbano: Seminário internacional. Anais... SãoPaulo: NUTAU/FUPAM/FAUUSP, 2002. (1 CD-ROM)

DÉSIR, J. M. Blocos e Tijolos de Concreto. Alvenaria Estrutural, Porto Alegre, online, [s. d.]. Disponível em: https://bit.ly/2V8n2eQ. Acesso em: 30 ago. 2021.

FERRARO, N. G.; SOARES, P. T.; FOGO, R. Física Básica. 4ª Ed. São Paulo: Saraiva Didáticos, 2019. p. 704.

INCROPERA, F. P.; DEWITT, D. P.; BERGMAN, T. L.; LAVINE, A. S. Fundamentos de transferência de calor e de massa. 7ª Ed. São Paulo: LTC, 2014. 694 p.

MATIAS, R. FRATTEZI, A. Física Geral Para o Ensino Médio. São Paulo: Harbra, 2010. 832 p.

SILVA, C. X.; BARRETO FILHO, B. 360° Física. Aula por Aula: partes 1, 2, 3. Vol. Único. 3ª Ed.São Paulo: FTD Educação.